Spatially distinct downregulation of Capicua repression and tailless activation by the Torso RTK pathway in the Drosophila embryo
نویسندگان
چکیده
Specification of the terminal regions of the Drosophila embryo depends on the Torso RTK pathway, which triggers expression of the zygotic genes tailless and huckebein at the embryonic poles. However, it has been shown that the Torso signalling pathway does not directly activate expression of these zygotic genes; rather, it induces their expression by inactivating, at the embryonic poles, a uniformly distributed repressor activity. In particular, it has been shown that Torso signalling regulates accumulation of the Capicua transcriptional repressor: as a consequence of Torso signalling Capicua is downregulated specifically at the poles of blastoderm stage embryos. Extending the current model, we show that activation of the Torso pathway can trigger tailless expression without eliminating Capicua. In addition, analysis of gene activation by the Torso pathway and downregulation of Capicua unveil differences between the terminal and the central embryonic regions that are independent of Torso signalling, hitherto thought to be the only system responsible for confering terminal specificities. These data provide new insights into the mode of action of the Torso signalling pathway and on the events patterning the early Drosophila embryo.
منابع مشابه
Capicua integrates input from two maternal systems in Drosophila terminal patterning.
In Drosophila, the maternal terminal system specifies cell fates at the embryonic poles via the localised stimulation of the Torso receptor tyrosine kinase (RTK). Signalling by the Torso pathway relieves repression mediated by the Capicua and Groucho repressors, allowing the restricted expression of the zygotic terminal gap genes tailless and huckebein. Here we report a novel positive input int...
متن کاملA MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling.
Early Drosophila development requires two receptor tyrosine kinase (RTK) pathways: the Torso and the Epidermal growth factor receptor (EGFR) pathways, which regulate terminal and dorsal-ventral patterning, respectively. Previous studies have shown that these pathways, either directly or indirectly, lead to post-transcriptional downregulation of the Capicua repressor in the early embryo and in t...
متن کاملCapicua DNA-binding sites are general response elements for RTK signaling in Drosophila.
RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways con...
متن کاملTranscriptome sequencing reveals maelstrom as a novel target gene of the terminal system in the red flour beetle Tribolium castaneum.
Terminal regions of the Drosophila embryo are patterned by the localized activation of the Torso-RTK pathway, which promotes the downregulation of Capicua. In the short-germ beetle Tribolium, the function of the terminal system appears to be rather different, as the pathway promotes axis elongation and, in addition, is required for patterning the extra-embryonic serosa at the anterior. Here, we...
متن کاملTorso RTK controls Capicua degradation by changing its subcellular localization.
The transcriptional repressor Capicua (Cic) controls multiple aspects of Drosophila embryogenesis and has been implicated in vertebrate development and human diseases. Receptor tyrosine kinases (RTKs) can antagonize Cic-dependent gene repression, but the mechanisms responsible for this effect are not fully understood. Based on genetic and imaging studies in the early Drosophila embryo, we found...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 123 شماره
صفحات -
تاریخ انتشار 2006